
CS106B
Winter 2017

Handout #09S
January 23, 2017

Section Solutions 2

Problem One: Iteration Station
void iterateOverVector1(const Vector<int>& vals) {
 for (int i = 0; i < vals.size(); i++) {
 cout << vals[i] << endl;
 }
}
This code works just fine!

void iterateOverVector2(const Vector<int>& vals) {
 for (int i: vals) {
 cout << vals[i] << endl;
 }
}
This code will likely crash at runtime. The variable i here refers to a value in the Vector, not an index in
the Vector, so using it as an index will jump to a spot that wasn’t designed to be an index.

void iterateOverVector3(const Vector<int>& vals) {
 for (int i: vals) {
 cout << i << endl;
 }
}
This code works just fine!

void iterateOverSet1(const Set<int>& vals) {
 for (int i = 0; i < vals.size(); i++) {
 cout << vals[i] << endl;
 }
}
This code won’t compile because you can’t select elements out of a set by index using the square bracket
operators.

void iterateOverSet2(const Set<int>& vals) {
 for (int i: vals) {
 cout << i << endl;
 }
}
This code works just fine!

void iterateOverStack1(const Stack<int>& s) {
 for (int i = 0; i < s.size(); i++) {
 cout << s.pop() << endl;
 }
}
This code won’t compile. The Stack here is passed in by const reference, which means that it can’t be
modified. However, calling .pop() modifies the stack.

- 1 -

void iterateOverStack2(Stack<int> s) {
 for (int i = 0; i < s.size(); i++) {
 cout << s.pop() << endl;
 }
}
This one fails for a subtle reason. Notice that each iteration of the loop causes s.size() to decrease by
one. Coupled with the fact that i is increasing by one at each point, this will only look at half the elements
of the Stack, ignoring the back half.

void iterateOverStack3(Stack<int> s) {
 while (!s.isEmpty()) {
 cout << s.pop() << endl;
 }
}
This code works just fine! It does make a copy of the Stack, but that’s okay given that the only way to see
everything in a stack is to destructively modify it.

- 2 -

Problem Two: Debugging Deduplicating

There are three errors here:

1. Calling .remove() on the Vector while iterating over it doesn’t work particularly nicely.
Specifically, if you remove the element at index i and then increment i in the for loop, you’ll
skip over the element that shifted into the position you were previously in.

2. There’s an off-by-one error here: when i = vec.size() - 1, the indexing vec[i + 1] reads off
the end of the Vector.

3. The Vector is passed in by value, not by reference, so none of the changes made to it will persist
to the caller.

Here’s a corrected version of the code:

void deduplicate(Vector<string>& vec) {
 for (int i = 0; i < vec.size() - 1;) {
 if (vec[i] == vec[i + 1]) {
 vec.remove(i);
 } else {
 i++;
 }
 }
}

Problem Three: References Available Upon Request

Topics: Reference parameters, range-based for loops

Here’s the output from the program:

1 3 7
1 3 7
2 4 8
2 4 8

Here’s a breakdown of where this comes from:

• The maui function takes its argument by value, so it’s making changes to a copy of the original
vector, not the vector itself. That means that the values are unchanged back in main.

• The moana function uses a range-based for loop to access the elements of the vector. This makes a
copy of each element of the vector, so the changes made in the loop only change the temporary
copy and not the elements of the vector. That makes that the values are unchanged back in main.

• heihei, on the other hand, uses int& as its type for the range-based for loop, so in a sense it’s
really iterating over the elements of the underlying vector. Therefore, its changes stick.

• The teFiti function creates and returns a new vector with a bunch of updated values, but the
return value isn’t captured back in main.

- 3 -

Problem Four: The New Org Chart

Here’s one possible implementation:

/* Given a person and the map of the bosses, returns the CEO of the company
 * that the indicated person works for
 *
 * We've taken in person by value rather than by reference here because inside
 * the body of the function we need to change its value, but we don’t want to
 * change the value back in the caller.
 */
string ceoFor(string person, const Map<string, string>& bosses) {
 while (bosses.containsKey(person)) {
 person = bosses[person];
 }
 return person;
}

bool areAtSameCompany(const string& p1,
 const string& p2,
 const Map<string, string>& bosses) {
 return ceoFor(p1, bosses) == ceoFor(p2, bosses);
}

- 4 -

Problem Five: Xzibit Words

One possible implementation is shown here:

string mostXzibitWord(const Lexicon& words) {
 /* Track the best string we've found so far and how many subwords it has. */
 string result;
 int numSubwords = 0;

 for (string word: words) {
 /* Store all the subwords we find. To avoid double-counting
 * words, we'll hold this in a Lexicon.
 */
 Lexicon ourSubwords;

 /* Consider all possible start positions. */
 for (int start = 0; start < word.length(); start++) {
 /* Consider all possible end positions. Note that we include
 * the string length itself, since that way we can consider
 * substrings that terminate at the end of the string.
 for (int stop = start; stop <= word.length(); stop++) {
 /* Note the C++ way of getting a substring. */
 string candidate = word.substr(start, stop – start);

 /* As an optimization, if this isn't a prefix of any legal
 * word, then there's no point in continuing to extend this
 * substring.
 */
 if (!words.containsPrefix(candidate)) break;

 /* If this is a word, then record it as a subword. */
 if (words.contains(candidate)) {
 ourSubwords.add(candidate);
 }
 }
 }

 /* Having found all subwords, see if this is better than our
 * best guess so far.
 */
 if (numSubwords < ourSubwords.size()) {
 result = word;
 numSubwords = ourSubwords.size();
 }
 }

 return result;
}

In case you're curious, the most Xzibit word is “foreshadowers,” with 34 subwords!

- 5 -

Problem Six: Jaccard Similarity

/* Given a Queue<string>, produces a string representing the k-grams it
 * contains. We take our parameter by value because the only way to read a queue
 * is to destructively modify it.
 */
string queueToString(Queue<string> kGram) {
 string result;
 while (!kGram.isEmpty()) {
 /* If we already had something before us, add a space. */
 if (result != "") result += " ";
 result += kGram.dequeue();
 }
 return result;
}

/* Returns a set of all the k-grams in the given input stream, represented as
 * strings.
 */
Set<string> kGramsIn(istream& input, int k) {
 /* Validate the input. */
 if (k <= 0) error("k must be positive.");

 TokenScanner scanner(input);
 scanner.addWordCharacters("'"); // Not necessary, but nice!

 /* We're going to store the last k word tokens read in in this queue.
 * This makes it easy to shift in and shift out new words into our k-gram.
 */
 Queue<string> kGram;
 Set<string> result;

 while (scanner.hasMoreTokens()) {
 string token = scanner.nextToken();
 if (scanner.getTokenType(token) == WORD) {
 kGram.enqueue(token);

 /* If this brought us up to size k, output what we have, then kick
 * out the oldest element so that we’re down to size k – 1. The next
 * word token we find will then refresh us to capacity.
 */
 if (kGram.size() == k) {
 result.add(queueToString(kGram));
 (void) kGram.dequeue(); // Ignore return value
 }
 }
 }

 return result;
}

/* The set of all the words in the stream is just the set of 1-grams. Nifty! */
Set<string> wordsIn(istream& input) {
 return kGramsIn(input, 1);
}

- 6 -

/* Prompts the user for the size of a k-gram to use. */
int chooseKGramSize() {
 while (true) {
 int result = getInteger("Enter k: ");
 if (result > 0) return result;

 cout << "Please enter a positive integer." << endl;
 }
}

/* Prompts the user for a filename, then returns the k-grams in that file. */
Set<string> contentsOfUserFileChoice(int k) {
 ifstream input;
 promptUserForFilename(input, "Enter filename: ");
 return kGramsIn(input, k);
}

int main() {
 int k = chooseKGramSize();
 Set<string> s1 = contentsOfUserFileChoice(k);
 Set<string> s2 = contentsOfUserFileChoise(k);

 /* Compute |S1 n S2| and |S1 u S2| using the overloaded * and + operators. */
 double intersectSize = (s1 * s2).size();
 double unionSize = (s1 + s2).size();

 cout << "Jaccard similarity: " << intersectSize / unionSize << endl;
 return 0;
}

- 7 -

	Problem One: Iteration Station
	Problem Two: Debugging Deduplicating
	Problem Three: References Available Upon Request
	Problem Four: The New Org Chart
	Problem Five: Xzibit Words
	Problem Six: Jaccard Similarity

